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Abstrad. We re-examine the so-called Nambu-Iona-Lasinio mechanism suggested by Song, 
Xu and Chin in breaking the supersymmetry in the Wess-Zumino model and show that this 
mechanism cannot be justified without assuming special effects behveen fermions. The fermion 
condensation suggested by them corresponds to an mstable vacumm configuration and as a result 
there is no fermion condensation and no supersymmetg breaking in the model they discuss. 

1. Introduction 

In a recent series of papers, Song, Xu and Chin [l] discussed the possibility that spontaneous 
supersymmetry breaking can be realized in a chiral symmetric model without adding a 
Fayet-Iliopoulos or O'Raifeartaigh term. In their analysis the so-called Nambu-Jona- 
Lasinio (NIL) mechanism was used and they suggest that fermionpair condensation induces 
a mass gap between supersymmetric partners. If their mechanism really worked it would 
open many possibilities in supersymmetric models. The purpose of this paper is to present 
the shortcomings of their argument and clarify the physical background. The main point 
is very simple: they neglected the one-loop effects of bosonic particles. Including these 
contributions correctly, we obtain the well known one-lwp effective potential; their solution 
corresponds to an unstable confi&ration of this effective potential. 

This paper is organized as follows. In section 2 we review the construction of an 
effective potential in the Wess-Zumino (wz) model and then we re-examine the so-called 
NIL method proposed in [l] and clarify the physical background. Concluding remarks are 
given in section 3. 

2. Review of the one-loop effective potential in the wz model 

The analysis of supersymmetry breaking in the WZ model is as old as the modern theory of 
supersymmehy [2]. Using a superfield method, Fujikawa and Lang [3] constructed a one- 
loop effective potential for the wz model and discussed the stability of, the supersymmetric 
vacuum. Many authors, for example [4], later discussed this and related topics. 

For notational convention we use the two-component representation: by explicitly 
separating the vacuum expectation values of bosonic fields we derive the one-loop effective 
potential by means of the tadpole method [5] instead of by direct evaluation [3]. 
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The starting wz Lagrangian for a chiral super multiplet is given by 

(2.1) 
1 L = 'P+Qloe@ + -AQ310e + im'PP?leo +HC [:! 

= iam$Cm$ + 2 U A + FF + [$A(AzF - $$A) + m ( A F  - i$$) + HC]. 
Shifting the bose fields of the theory in the fashion 

A + A + a  
F - + F + f  (2.2) 

we obtain 

L ' = i a m $ 5 " ' $ + ~ D A + ~ F + [ q ( A F - $ $ $ ) + ~ A ( A A F - $ $ A ) + ~ A f A A A  

+ F ( m a + i A a 2 - f ) + A O f  +HC] (2.3) 

q = m + A a .  (2.4) 
Before calculating the effective potential we should derive the propagators of the theory. 
Extracting the quadratic part of the boson fields 

where 

SO = / d4x $"'A" + Q T J  

- A ,  A, F, F) I "  J = - (  ( J ,  7, K, E) 

(2.5) 

where 

A = (U - flq)' - A'yf. 
The treelevel generating function is now given by 

(2.7) 

InZo= - i / d 4 x ( J T A - ' J ) .  2 (2.8) 

Looking at ~ I , = o  the propagators of the theory are obtained directly. 
Now, let us derive the effective potential by means of the tadpole method. According 

to [5] the following relation exists between the derivative of the effective potential and the 
IPI tadpole: 
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In this expression $0 is the vacuum expectation value (VEV) of the field Q, which can be any 
scalar field of the theory (in the present theory Q, is A or F ,  and $0 is a or f), and r'(*) 
is the  PI tadpole that is calculated after separating the VEV and quantum fluctuation of the 
scalar fields as Q, -+ $ + h. Hence, we use (2.3) to calculate Using these relations 
we obtain 

h 
-ma + -a2 - j vo 

d f  2 
_ -  

and 

f _ = _ _  - 
dvl d f  

Vo = (ma + $a2) f - f f  + P(f, a,  Z) 

h2 s d4p (p2 + i j ~ ) ~  - f f h 2 '  
After integration we obtain 

and 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where P(f, a, i) and H ( Z ,  a )  are integration constants. We can impose the supersymmetric 
boundary conditions 

VOlfA = 0 (2.14) 

and 

VI If-0 = 0. (2.15) 

Then we recover the effective potential 

vo = [(ma + $ha2)f  + €IC] - f f (2.16) 

and 

(2.17) 

which is also directly calculated in [ 3 ] .  The vacuum stability of this potential is well 
analysed in [3 ,4 ] .  Equation (2.17) can be evaluated as 

+(I -x)'in(l + X ) I }  - (z -  l)[f12 (2.18) 

where we set x = p.fl/[r#, and A stands for the ultraviolet cut-off. 
We have also added the wavefunction renormalization factor 2 (in the last term in 

(2.18)) in order to absorb the infinity contained in log A'. In order to avoid the infrared 
singularity which can appear when we set m = 0 in the next section, we renormalize the 
wavefunction at 

I f l = O  and Iql=M (2.19) 

where M has the dimensions of a mass. The wavefunction renormalization factor is then 
fixed as 

(2.20) 
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The total effective potential up to oneloop level is now given by 

In order to discuss the vacuum stability, we parametrize f1 and fz by 

(2.22) 

and evaluate V a  at aVa/a@ = 0 (this corresponds to the direction of the valley of the 
effective potential). We then find 

fi tan@ = - 
f2 

(2.23) 

To take account of the two possible signs of the square-root we extend the range of x to 
-CO c x c +ca. This potential develops an imaginary part for 1x1 > 1 and this means that 
the solution 

I f l Z o  and I d = O  (2.24) 
is dynamically unstable. We can find the stationary value of this effective potential in the 
region 1x1 < 1 assuming that a is small. The effective potential can be written as 

A2(uf + 4) + 2mhal + mz. (2.3) 

Taking the minimum of the potential (aV,,/ax = 0) we obtain 

for 

(2.26) 

(2.27) 

(2.28) 

In both solutions, f is zero and the supersymmetry is not broken. The second solution gives 
non-zero vEv of a but f still remains zero: the two solutions (2.28) are actually two stable 
physically equivalent solutions, since one can pass from one to the other by a redefinition 
of the fields [2]. When we consider the massless wz model in the next section, the second 
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solution becomes at = 0, a2 = 0 so the VEV of a remains zero. A detailed study of this 
phenomenon from another point of view is given in 121. 

Let us examine the physical meanings of this solution. At the tree level, the equation 
of motion for the auxiliary field is 

(2.29) 

At a first glance this equation seems to suggest that if the treelevel potential develops a 
non-zero vacuum expectation value (A) then ( F )  becomes non-zero and the supersymmetry 
of the theory can be broken spontaneously; but this does not happen. Including higher-order 
quantum corrections the supersymmetry-breaking vacuum ( ( F )  = +h(A)’, (A) non-zero) 
becomes unstable and the supersymmetric vacuum ( ( F )  = 0) remains stable. Furthermore, 
there is no A dependence in the effective potential after renormalization of the wavefunction. 

To analyse the behaviour of the effective potential at small [ql reliably, the 
renormalization group improvement of the effective potential has also been discussed in 
[3]. The effective potential for the massless theory is 

F = T A A .  1 -2 

(2.30) 2 2  
+ X I 4  ltll . 

The stationary value of this potential in the region 1x1 < 1 is estimated to be 

at 

Renormalization group improvement of Ver suggests that 

V,r Y ~ ( A ( M ) ~ U ~ ~ ) ~ / ’ A ( ~ ~ I ) ~ / ~  

with the running coupling 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

Note that the combination A(M)la13 is renormalization group invariant in this theory. 
Vefi in (2.33) has a minimum at la[ = 0 for which h(la1) -+ 0 and the analysis of Vee 

is reliable. For ]a] + 0, x + 0 in (2.33) and thus I f 1  -+ 0 and there is no supersymmetry 
breaking. This explicit analysis is, of course, consistent with the analysis on the basis of a 
Witten index [6] and is useful for the discussion in the next section. 

We summarize the results restricting ourselves to the massless wz model. First, there 
is no supersymmehy-breaking vacuum. Second, the VEV of scalar field A remains zero. 

3. The meaning of the NJL method in the WZ model 

In this section we reexamine the physical background of the NJL method proposed in [l]. 
For convenience, we first restate the basic procedure given in [l]. 
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The same Lagrangian (2.1) is used, but at the first stage we eliminate the auxiliary field 

(3.1) 

F using the equation of motion. The result is (with m = 0) 

L = i&,$Z"+ + A* A - [$A++A + H C l -  $h21AI4. 

The equations of motion are given by 

D A  + kA2A*AA + 1 iA++ - -  = 0 
OA" + $AZA"A*A + $A++ = 0 
[ia,? -AA] + = 0. 

Taking the vacuum expectation value of the first equation in (3.2). one obtains 

(3.2) 

O ( A )  + iAz(AAA*) = -$A($$). (3.3) 

Expansion of (A*AA) and ($$) to the one-loop level (i.e. to the order of f i )  is given by 

(A*AA) = (A')(A)(A) + ( A * ) I O A A l  + (A)[GA'AI 
(3.4) 

Here the results of the one-loop diagrams are symbolically represented. Then, to the one- 
loop order, equation (3.3) becomes 

I ($$) = [ G q .  

Neglecting the tadpoles of the bosonic fields and setting Oa = 0 in (3.5), we obtain the 
same answer as in [I]: 

haaa' + Tr [: j * 
( 2 ~ r ) ~  i8,Sm -ha* (3.6) 

which leads to the fermion-pair condensation and a mass gap between the supersymmetric 
partners [I]. In fact, equation (3.6) can be rewritten as 

(3.7) 

This equation looks like a well known mass-gap equation. The integration requires an 
ultraviolet cut-off, so the solution (a) of the self-consistent equation (3.7) depends on the 
ultraviolet cut-off parameter. Shifting the fields in the Lagrangian as A + A + a ,  with a 
given by equation (3.7), we obtain the masses 

mi = 21a] 2 mg = Alal. (3.8) 

The supersymmetric partners thus appear to acquire different masses. This is the mechanism 
noted in [I]. 

But we must not neglect bosonic tadpoles. As discussed in the previous section, the 
neglect of bosonic tadpoles in (3.5) is not consistent with the expansion in f i  and the resulting 
effective potential corresponds to the expansion around an unstable vacuum (i.e. x = $ in 
(2.23)). The meaning of equation (3.3) is now clear: this equation means that the derivative 

a yo+"om-lmn of the effective potential is set to zero at the minimum, i.e. ( au. llvaC = 0. One 
can easily obtain (3.3) by applying the tadpole method (2.9) to the variable a, not to f. 
Substituting A in (3.1) as A + A + a  and using the tadpole method, one obtains 
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The evaluation and integration of (3.9) is slightly complicated in the present calculational 
scheme but the result is the same as (2.30) (see [4]). Of course, there is no cut-off 
dependence in the final result which explicitly remains in the analysis of [I], nor is there 
supersymmetry breaking induced by fermion-pair condensation in the full effective potential 
resulting from (3.9). The stationary point of the effective potential corresponds to the 
supersymmetry preserving point of (2.30). 

In conclusion, we have shown that the supersymmetry breaking solution in [l] is a 
direct consequence of  the neglect of oneloop bosonic effects in the loop expansion of 
the effective potential. Since no dynamical mechanism is given in [l] to explain why the 
one-loop fermion effects should be retained and why the one-loop boson effects should be 
neglected, we conclude that the so-called Nambu-Jona-Lasinio mechanism suggested there 
is not justified in the conventional framework of field theory without assuming some special 
atiractive force between fermions. 
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